25 research outputs found

    Carbonation of borehole seals: comparing evidence from short-term laboratory experiments and long-term natural analogues

    Get PDF
    It is crucial that the engineered seals of boreholes in the vicinity of a deep storage facility remain effective for considerable timescales if the long-term geological containment of stored CO2 is to be effective. These timescales extend beyond those achievable by laboratory experiments or industrial experience. Study of the carbonation of natural Ca silicate hydrate (CSH) phases provides a useful insight into the alteration processes and evolution of cement phases over long-timescales more comparable with those considered in performance assessments. Samples from two such natural analogues in Northern Ireland have been compared with samples from laboratory experiments on the carbonation of Portland cement. Samples showed similar carbonation reaction processes even though the natural and experimental samples underwent carbonation under very different conditions and timescales. These included conversion of the CSH phases to CaCO3 and SiO2, and the formation of a well-defined reaction front. In laboratory experiments the reaction front is associated with localised Ca migration, localised matrix porosity increase, and localised shrinkage of the cement matrix with concomitant cracking. Behind the reaction front is a zone of CaCO3 precipitation that partly seals porosity. A broader and more porous/permeable reaction zone was created in the laboratory experiments compared to the natural samples, and it is possible that short-term experiments might not fully replicate slower, longer-term processes. That the natural samples had only undergone limited carbonation, even though they had been exposed to atmospheric CO2 or dissolved in groundwater for several thousands of years, may indicate that the limited amounts of carbonate mineral formation may have protected the CSH phases from further reaction

    Palaeohydrogeology using geochemical, isotopic and mineralogical analyses: salinity and redox evolution in a deep groundwater system through Quaternary glacial cycles

    Get PDF
    Mineralogical, geochemical and isotopic analyses of secondary calcites are interpreted as part of an investigation of deep groundwaters in fractured metavolcanic rock overlain by sedimentary rock. Drillcore rock samples and groundwater samples from deep boreholes (maximum depth 1950 m) were analysed. This produces information about the evolution of salinity and redox in relation to past groundwater movements including the impacts of climatic change through the Quaternary period. Salinities of present-day groundwaters vary from dilute to brine concentrations and are related to three distinct groundwater flow regimes. Crystal morphology, stable isotopic analyses and isotopic dating, cathodoluminescence and microanalyses of Fe, Mn and REEs in the latest generation of secondary calcite, plus other analyses, have provided insights into variations of salinity over time and of redox in past groundwaters. Interpretation suggests that groundwater in the depth range of the transition from dilute to brackish/saline concentrations has been gradually diluted over time by meteoric water ingress. 230Th/234U whole-crystal ages indicate that at least part of the late-stage calcite mineralisation in the present groundwater flow system is of Quaternary age, although the mineralisation may have been initiated much earlier by meteoric invasion in the Miocene, following regional uplift. The calcites exhibit a wide range in oxygen isotope composition (δ18OPDB −2 to −22‰), although no extremely light or heavy δ13C values indicative of microbial methane oxidation or deep methanogenesis were observed. The very light δ18O values suggest that glacial or other cold-climate waters flowed to more than 700 m depth in the centre of the study area and formed a greater proportion of groundwater at that depth than at present. Fe and Ce are interpreted as semi-quantitative proxies for past redox conditions over the period when secondary calcite was deposited. Variability of Fe and Mn contents of secondary calcites in deeper rock, presently containing saline groundwater, is evidence of reducing conditions being maintained in the long term, though the strength of negative redox has probably fluctuated due to other redox-active chemistry. Depth-wise changes of groundwater redox in the past are also indicated by Ce concentrations versus other REEs in secondary calcites. Shallow calcites show a negative Ce anomaly in some growth zones due to oxidation to CeIV whilst deeper calcites do not exhibit this Ce behaviour, indicating that reducing conditions prevailed. Distribution of Fe-Mn oxyhydroxides and pyrite confirm, at a broader scale over depth and time, the findings about redox variations that secondary calcites indicate. Mineralogical and geochemical studies add further information to the understanding of past geochemical conditions in deep groundwaters in this area. Interpretations provide semi-quantitative constraints on the evolution and likely variations and directions of movement of groundwater salinity and redox over the Quaternary timescale

    Retention of technetium-99 by grout and backfill cements: Implications for the safe disposal of radioactive waste

    Get PDF
    Technetium-99 (99Tc) is an important radionuclide when considering the disposal of nuclear wastes owing to its long half-life and environmental mobility in the pertechnetate (Tc(VII)) redox state. Its behaviour in a range of potential cement encapsulants and backfill materials has been studied by analysing uptake onto pure cement phases and hardened cement pastes. Preferential, but limited, uptake of pertechnetate was observed on iron-free, calcium silicate hydrates (C–S–H) and aluminate ferrite monosulphate (AFm) phases with no significant adsorption onto ettringite or calcium aluminates. Diffusion of 99Tc through cured monolithic samples, representative of cements being considered for use in geological disposal facilities across Europe, revealed markedly diverse migration behaviour, primarily due to chemical interactions with the cement matrix rather than differential permeability or other physical factors. A backfill cement, developed specifically for the purpose of radionuclide retention, gave the poorest performance of all formulations studied in terms of both transport rates and overall technetium retention. Two of the matrices, pulverised fuel ash: ordinary Portland cement (PFA:OPC) and a low-pH blend incorporating fly ash, effectively retarded 99Tc migration via precipitation in narrow, reactive zones. These findings have important implications when choosing cementitious grouts and/or backfill for Tc-containing radioactive wastes

    Assessing the long-term behaviour of the industrial bentonites employed in a repository for radioactive wastes by studying natural bentonites in the field

    Get PDF
    Bentonite makes an important contribution to the performance of the engineered barriers in most radioactive waste repository designs. The choice of bentonite results from its favourable properties for waste isolation and its stability in relevant geological environments. However, the longevity of bentonite (especially the resistance to waste container sinking) has been little studied. Modelling results suggest significant bentonite deformation and associated canister sinking is unlikely and, here, long-term natural system data are used as a reality check on model predictions. Results indicate that bentonite from the investigated site shows no significant deviation in bulk physical parameters from repository bentonite. However, micro-scale shear planes can be seen throughout the sampled cores. The presence of multi-directional S- and C-type shears suggests they originate from loading from the overlying limestone, not gravitational tectonics. The plastic limits and angles of shearing resistance for natural and repository bentonites suggest both are susceptible to shearing. The impact of bentonite shear under load could be minimised by appropriate design, but existing lower activity waste container designs do not consider the potentially high external stresses from the bentonite backfill and this should be addressed in future

    Subsurface microbial hydrogen cycling: natural occurrence and implications for industry

    Get PDF
    Hydrogen is a key energy source for subsurface microbial processes, particularly in subsurface environments with limited alternative electron donors, and environments that are not well connected to the surface. In addition to consumption of hydrogen, microbial processes such as fermentation and nitrogen fixation produce hydrogen. Hydrogen is also produced by a number of abiotic processes including radiolysis, serpentinization, graphitization, and cataclasis of silicate minerals. Both biotic and abiotically generated hydrogen may become available for consumption by microorganisms, but biotic production and consumption are usually tightly coupled. Understanding the microbiology of hydrogen cycling is relevant to subsurface engineered environments where hydrogen-cycling microorganisms are implicated in gas consumption and production and corrosion in a number of industries including carbon capture and storage, energy gas storage, and radioactive waste disposal. The same hydrogen-cycling microorganisms and processes are important in natural sites with elevated hydrogen and can provide insights into early life on Earth and life on other planets. This review draws together what is known about microbiology in natural environments with elevated hydrogen, and highlights where similar microbial populations could be of relevance to subsurface industr

    Groundwater–rock interactions in crystalline rocks: evidence from SIMS oxygen isotope data

    Get PDF
    The diffusive exchange of dissolved material between fluid flowing in a fracture and the enclosing wallrocks (rock matrix diffusion) has been proposed as a mechanism by which radionuclides derived from a radioactive waste repository may be removed from groundwater and incorporated into the geosphere. To test the effectiveness of diffusive exchange in igneous and metamorphic rocks, we have carried out an investigation of veins formed at low temperatures (<100°C), comparing the oxygen isotopic composition of vein calcite with that of secondary calcite in the wallrocks. Two examples of veins from the Borrowdale Volcanic Group, Cumbria, and one from the Mountsorrel Granodiorite, Leicestershire, UK, have remarkably similar vein calcite compositions, ca. +20‰(SMOW) or greater, substantially heavier than the probable compositions of the host rocks, and these vein calcite compositions are inferred to reflect the infiltrating fluid and the temperature of vein formation. Calcites from the wallrocks are similar to those in veins, with little evidence for exchange with the wallrocks. The results support existing models for this type of vein which suggest low-temperature growth from formation brines originally linked to Permian or Triassic evaporites. The results are consistent with flow through fractures being attenuated through a damage zone adjacent to the fracture and provide no evidence of diffusional exchange with pore waters from wallrocks

    Gel formation at the front of expanding calcium bentonites

    Get PDF
    The removal of potentially harmful radioactive waste from the anthroposphere will require disposal in geological repositories, the designs of which often favour the inclusion of a clay backfill or engineered barrier around the waste. Bentonite is often proposed as this engineered barrier and understanding its long-term performance and behaviour is vital in establishing the safety case for its usage. There are many different compositions of bentonite that exist and much research has focussed on the properties and behaviour of both sodium (Na) and calcium (Ca) bentonites. This study focusses on the results of a swelling test on Bulgarian Ca bentonite that showed an unusual gel formation at the expanding front, unobserved in previous tests of this type using the sodium bentonite MX80. The Bulgarian Ca bentonite was able to swell to completely fill an internal void space over the duration of the test, with a thin gel layer present on one end of the sample. The properties of the gel, along with the rest of the bulk sample, have been investigated using ESEM, EXDA and XRD analyses and the formation mechanism has been attributed to the migration of nanoparticulate smectite through a more silica-rich matrix of the bentonite substrate. The migration of smectite clay out of the bulk of the sample has important implications for bentonite erosion where this engineered barrier interacts with flowing groundwater in repository host rocks

    Natural analogue evidence for controls on radionuclide uptake by fractured crystalline rock

    Get PDF
    Fractured Crystalline Rocks (FCR) are being considered in several countries as hosts for radioactive waste repositories. In FCR, radionuclides may be transported relatively rapidly by bulk groundwater flow through open fractures, but much more slowly by diffusion through porewater in the rock matrices. Rock matrix diffusion (RMD) is the diffusion of radionuclides in the aqueous phase, between open fractures and rock matrices. Sorption or co-precipitation on the fracture surfaces and walls of the matrix pores causes further radionuclide retardation. RMD may be important in a repository's safety case and has been investigated by many published short-term (to a few years) laboratory and in-situ experiments. To improve understanding over longer timescales, we investigated evidence for RMD of several natural radioelements, and radioelement analogues, in five exemplar fractured crystalline rock (FCR) samples aged between c. 70 Ma and c. 455 Ma. The sample suite consisted of two samples of Borrowdale Volcanic Group (BVG) meta-tuff from northwest England, a sample of Carnmenellis Granite from southwest England and two samples of Toki Granite from central Japan. Uptake or loss of the studied elements is limited to an altered damage zone in each sample, coupled to mineral alteration processes. These zones are most extensive (a few tens of millimetres) in the Toki Granite samples. We also found unstable primary igneous minerals to persist in the immediate wallrocks of fractures in studied granite samples, suggesting that pores were not permanently water saturated in these samples. Although only a small sample suite was studied, the results show that while RMD may be important in some kinds of FCR, in others it may be negligible. Site-specific information is therefore needed to determine how much reliance can be placed on RMD when developing a safety case

    Bacterial Diversity in the Hyperalkaline Allas Springs (Cyprus), a Natural Analogue for Cementitious Radioactive Waste Repository

    Get PDF
    The biogeochemical gradients that will develop across the interface between a highly alkaline cementitious geological disposal facility for intermediate level radioactive waste and the geosphere are poorly understood. In addition, there is a paucity of information about the microorganisms that may populate these environments and their role in biomineralization, gas consumption and generation, metal cycling, and on radionuclide speciation and solubility. In this study, we investigated the phylogenetic diversity of indigenous microbial communities and their potential for alkaline metal reduction in samples collected from a natural analogue for cementitious radioactive waste repositories, the hyperalkaline Allas Springs (pH up to 11.9), Troodos Mountains, Cyprus. The site is situated within an ophiolitic complex of ultrabasic rocks that are undergoing active low-temperature serpentinization, which results in hyperalkaline conditions. 16S rRNA cloning and sequencing showed that phylogenetically diverse microbial communities exist in this natural high pH environment, including Hydrogenophaga species. This indicates that alkali-tolerant hydrogen-oxidizing microorganisms could potentially colonize an alkaline geological repository, which is predicted to be rich in molecular H2, as a result of processes including steel corrosion and cellulose biodegradation within the wastes. Moreover, microbial metal reduction was confirmed at alkaline pH in this study by enrichment microcosms and by pure cultures of bacterial isolates affiliated to the Paenibacillus and Alkaliphilus genera. Overall, these data show that a diverse range of microbiological processes can occur in high pH environments, consistent with those expected during the geodisposal of intermediate level waste. Many of these, including gas metabolism and metal reduction, have clear implications for the long-term geological disposal of radioactive waste

    The mineralogy and fabric of 'Brickearths' in Kent, UK and their relationship to engineering behaviour

    Get PDF
    Mineralogical and petrographical investigation of two loessic brickearth profiles from Ospringe and Pegwell Bay in north Kent, UK have differentiated two types of brickearth fabric that can be correlated with different engineering behaviour. Both sequences comprise metastable (collapsing) calcareous brickearth, overlain by non collapsing ‘non-calcareous’ brickearth. This study has demonstrated that the two types of brickearth are discretely different sedimentary units, with different primary sedimentary characteristics and an erosional junction between the two units. A palaeosol is developed on the calcareous brickearth, and is associated with the formation of rhizolithic calcrete indicating an arid or semi-arid environment. No evidence has been found for decalcification being responsible for the fabric of the upper ‘non-calcareous’ brickearth. Optically-stimulated dates lend further support for the calcareous and ‘non-calcareous’ brickearth horizons being of different age or origins. The calcareous brickearth is metastable in that it undergoes rapid collapse settlement when wetted under applied stresses. It is characterised by an open-packed arrangement of clay-coated, silt-sized quartz particles and pelletised aggregate grains (peds) of compacted silt and clay, supported by an interped matrix of loosely packed, silt/fine-grained sand, in which the grains are held in place by a skeletal framework of illuviated clay. The illuviated clay forms bridges and pillars separating and binding the dispersed component silt/sand grains. There is little direct grain-to-grain contact and the resultant fabric has a very high voids ratio. Any applied load is largely supported by these delicate clay bridge and pillar microfabrics. Collapse of this brickearth fabric can be explained by a sequence of processes involving: (1) dispersion and disruption of the grain-bridging clay on saturation, leading to initial rapid collapse of the loose packed inter-ped silt/sand; (2) rearrangement and closer stacking of the compact aggregate silt/clay peds; (3) with increasing stress further consolidation may result from deformation and break up of the peds as they collapse into the inter-ped regions. Smectite is a significant component of the clay assemblage and will swell on wetting, further encouraging disruption and breaking of the clay bonds. In contrast, the ‘non-calcareous’ brickearth already possesses a close-packed and interlocking arrangement of silt/sand grains with only limited scope for further consolidation under load. Minor authigenic calcite and dolomite may also form meniscus cements between silt grains. These have either acted as ‘‘scaffolds’’ on which illuviated clay has subsequently been deposited or have encrusted earlier formed grain-bridging clay. In either case, the carbonate cements may help to reinforce the clay bridge fabrics. However, these carbonate features are a relatively minor feature and not an essential component of the collapsible brickearth fabric. Cryoturbation and micromorphological features indicate that the calcareous brickearth fabric has probably been developed through periglacial freeze–thaw processes. Freezing could have produced the compact silt/clay aggregates and an open porous soil framework containing significant inter-ped void space. Silt and clay were remobilised and translocated deeper into the soil profile by water percolating through the active layer of the sediment profile during thawing cycles, to form the loosed packed inter-ped silt matrix and grain-bridging meniscus clay fabrics. In contrast, the upper ‘non-calcareous’ brickearth may represent a head or solifluction deposit. Mass movement during solifluction will have destroyed any delicate grain-bridging clay microfabrics that may have been present in this material
    corecore